Assessment of Physicochemical Properties of Jackfruits’ (Artocarpus heterophyllus Lam) Pulps

C. Goswami1, M. A. Hossain1, H. A. Kader2 and R. Islam3

1Department of Biochemistry, Bangladesh Agricultural University, Mymensingh-2202; 2Department of Biochemistry, Patuakhali Science and Technology University, Patuakhali; 3Department of Animal Science, Bangladesh Agricultural University, Mymensingh-2202

Abstract A study was undertaken to determine the physical properties and chemical composition of three types of jackfruit (Khaja, Dorasha and Ghila) pulps collected from different growing areas for a period of 6 months. In these circumstances, the pulps of Khaja (Both Modhupur and Valuka) were firm textured and those of Ghila were very soft to soft. Correspondingly, intermediate textures of pulps were observed in case of Dorasha. Furthermore, the pulps colour of Khaja fruits were whitish yellow whereas that of Ghila pulps were deep yellow. The colour of Dorasha pulps were light yellow. The Khaja, Dorasha and Ghila pulps were found less, medium and very juicy, respectively. However, highest moisture content was found in Valuka Ghila (84.44 %) and lowest in Modhupur Ghila (79.62 %) type of jackfruits. Khaja and Ghila collected from Valuka had greater ash content than Khaja and Ghila from Modhupur. Beside this, titrable acidity, Vitamin C and carotene content of Khaja type of jackfruits were lower than that of Ghila types. Highest carotene content was observed in Modhupur Ghila (520.46 µg/100g) while lowest in Valuka Khaja (334.06 µg/100g). TSS, starch, total sugar, non-reducing sugar and carotene content were higher in the jackfruit pulps from modhupur than that of Valuka. It was also found that Khaja types had higher starch content than Ghila types. The highest pH value was found in Modhupur Khaja (6.45) and lowest in Modhupur Ghila (5.61). There were slight variations in fibre content among the jackfruit pulps. Lowest reducing sugar content was found in Dorasha type of jackfruit (4.90%). From the study it is concluded that the proximate composition of jackfruit pulps is influenced by both type and place. Therefore, this information would be useful to select the best quality jackfruit to prepare different food products.

Key words Artocarpus heterophyllus, physico-chemical, Proximate, pulps

Jackfruit (Artocarpus heterophyllus Lam) is a large fruit of a milky-juice tree, of Moraceae family. The edible, pulp part represents the parianth. Jackfruit is the largest edible fruit in the world (Naik, 1949 and Sturrock, 1959). It originated in the forests of the Western Ghats (India), where it still grows in the wild, as well as in the evergreen forests of Assam and Myanmar. It is cultivated throughout Bangladesh, Burma, India, Indonesia, Malaysia, The Philippines, Sri Lanka, Thailand and to some extent in Brazil and Queensland (Australia). Jackfruit locally called kathal has gained the position of national fruit of Bangladesh due to its popularity and various other features. The poor people of jackfruit growing area, used to eat this fruit instead of rice, for one of their daily meals. It is commonly referred to as “The Poor man’s food” (Rahman et al., 1995). At present Bangladesh produces 925,965 tons of jackfruit annually from an area of 9,977 hectares of land at the rate of 92.81 tons per hectare (BBS, 2007). It ranks next to mango and banana in total acreage but second in annual production among the fruits grown in Bangladesh. It is grown throughout the country. But it is grown more abundantly in Valuka and Modhupur regions of Mymensingh and Tangail districts. Jackfruit occurs naturally in two textural forms; Ghila with soft and pulpy perianth when ripe and Khaja with firm perianth (Rahman et al., 1999). Additionally there is another type named “Dorasha” having both the characteristics of Khaja and Ghila. Jackfruit has been reported to contain high levels of
protein, starch, calcium, and thiamine (Brukill, 1997). The juicy pulp of the ripe fruit is eaten fresh as a dessert. The bulbs (excluding the seeds) are rich in sugar, fairly well in carotene and also contain vitamin C (Bhatia et al., 1955). Jackfruit is also rich in nutrients such as sodium, potassium, iron, vitamin B₆, calcium, zinc, and many other nutrients. Jackfruit can lower blood pressure, cure fever and diarrhea. This fruit is also known to be beneficial to fighting asthma, ulcers, indigestion, tension, nervousness and constipation. It can slow down aging and cell degeneration. Jams, beverages, candies, conserves and dehydrated forms are other industrial uses for which the jackfruit can be utilized (Naik, 1949). The present study was designed to see the variation of physical characteristics and biochemical composition of pulp of the three types (Khaja, Ghila and Dorosha) of jackfruit grown in two localities (Valuka and Madhupur) of Bangladesh.

Materials and Methods

The research work was conducted in the laboratory of Department of Biochemistry, Bangladesh Agricultural University, Mymensingh-2202. For this, mature ripened jackfruits (Khaja, Ghila and Dhorasha) were collected from Valuka and, Khaja and Ghila from Modhupur. Physical parameters were recorded from the comments of 10 correspondents. Freshly collected jackfruits were stored in the laboratory of Biochemistry department at room temperature. The fruits were opened and the required pulps of fruits were randomly collected and stored in deepfreeze at -20±2 °C temperature. Fresh pulps were used to estimate vitamin C, carotene, pH and titrable acidity. Then the other estimations were done from the stored pulps. Moisture, dry matter, ash contents, titrable acidity, fibre and TSS of pulps of jackfruits were determined by the methods described in the Manual of Analysis of Fruit and Vegetable Products by Ranganna (1979). In addition, pH of pulp was determined by Fischer pH meter. Vitamin C and carotene content of pulps were determined in according to AOAC method (1965). Total sugar and reducing sugar were determined by the anthrone method (Jayaraman, 1981) and dinitrosalicylic acid method (Miller, 1972), respectively.

Fig1. Different types of Jackfruits pulps

Results and Discussions

Pulp characteristics

<table>
<thead>
<tr>
<th>Pulp</th>
<th>Texture</th>
<th>colour</th>
<th>Juicyness</th>
<th>Sweetness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khaja Valuka</td>
<td>firm</td>
<td>Whitish yellow</td>
<td>juicy</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Ghila Valuka</td>
<td>very soft</td>
<td>deep yellow</td>
<td>Very juicy</td>
<td>Sweet</td>
</tr>
<tr>
<td>Dorosha Valuka</td>
<td>intermediate</td>
<td>light yellow</td>
<td>medium juicy</td>
<td>Medium sweet</td>
</tr>
<tr>
<td>Khaja Modhupur</td>
<td>firm</td>
<td>Whitish yellow</td>
<td>juicy</td>
<td>Less sweet</td>
</tr>
<tr>
<td>Ghila Modhupur</td>
<td>very soft</td>
<td>deep yellow</td>
<td>Very juicy</td>
<td>sweet</td>
</tr>
</tbody>
</table>

There were differences in colour and texture among the pulps of jackfruits from different locations.

Table 1
The pulps of Khaja (Both Modhupur and Valuka) were firm textured and those of Ghila were very soft to soft. Intermediate textures of pulps were observed in case of Dorasha. The colour of pulps of Khaja fruits were whitish yellow whereas that of Ghila pulps were deep yellow. The colour of Dorasha pulps were light yellow. The Khaja, Dorasha and Ghila pulps were found less juicy, medium juicy and very juicy, respectively. These observations are close to the statement given by Haque (2001) who studied on 45 germplasms established at Bangladesh Agricultural University, Mymensingh.

Moisture

There was a difference in moisture content of pulp of jackfruits of five types- Valuka khaja, Valuka Ghila, Valuka Dorasha, Modhupur khaja and Modhupur Ghila. In this regard, highest moisture content was found in Valuka Ghila (84.44 %) and lowest in Modhupur Ghila (79.62 %) type of jackfruits. The Valuka Khaja, Valuka Dorasha, Modhupur Khaja contains 82.88, 80.04 and 80.95 % respectively. These variations may be due to difference in types and locations. On the other hand, Dorasha types of jackfruit had intermediate moisture content (80.04 %). It may be due to the texture of pulp which was intermediate of soft (Ghila) and firm (Khaja) pulps. These results were found to be closer to findings of Haque (1993) who reported the moisture content of soft, intermediate and firm pericarp were 81.89, 80.02 and 79.65 %, respectively.

Dry Matter

From the Table 2, it was observed that the pulps of Modhupur Jackfruits had greater dry matter content than that of valuka jackfruits. This might be due to the influence of locality and various environmental factors. The highest and lowest dry matter contents were observed in Modhupur Ghila (20.38 %) and Valuka Ghila (15.56 %), respectively. Valuka Dorasha contained 19.96 % dry matter which indicates its intermediate texture of pulp. These results were more or less comparable with the findings of Karim et al. (2008) who reported that the dry matter content ranges from 19.16 to 21.73 %.

Ash

Ash content was highest in Valuka Dorasha (1.11%). The ash content of Valuka Khaja and Ghila, Modhupur Khaja and Ghila were 0.98 and 1.04, 0.88, and 0.70%, respectively. So those Khaja and Ghila collected from Valuka had greater ash content than Khaja and Ghila from Modhupur and some variation among the different types. These were may be due to difference in texture of pulps and fibre content. The values were closely agreed with those reported by Karim et al. (2008) and Hossain et al. (1979) who mentioned the ash content of the pulp was 1.1 %.

Vitamin C

The Vitamin C content was found to be highest in Valuka Dorasha which contained 8.18 mg% Vitamin C. Besides this, Valuka and Modhupur Khaja contained 5.20 and 4.57 mg% Vitamin C whereas Valuka and Modhupur Ghila contained 7.26 and 7.13 mg% Vitamin C, respectively.

On this context, Vitamin C content of Khaja type of jackfruits was lower than that of Ghila types of jackfruits. This statement was also found in the findings of Haque (1993) who reported the higher Vitamin C content in Soft pericarp (Ghila) than firm pericarp (Khaja).

Carotene

Variation in carotene content was also observed. Valuka Khaja, Valuka Ghila, Valuka Dorasha, Modhupur Khaja, and Modhupur Ghila contained 334.06, 470.91, 380.45, 346.03 and 520.46 µg carotene/100g sample, respectively. It can be stated from the above values that khaja types had lower carotene content than Ghila types whereas pulps of jackfruit from Modhupur had higher carotene content than that of Valuka types. Highest carotene content was observed in Modhupur Ghila (520.46 µg/100g) while lowest in Valuka Khaja (334.06 µg/100g). The present results were found to be closer to the findings of Hasan (2002).

Starch

Variation in starch content was observed in both place to place and type to type. Valuka Khaja, Ghila and Dorasha, Modhupur Khaja and Ghila contained 7.37, 6.11, 7.07, 8.34 and 7.27 % starch, respectively. It was also found that Khaja types had higher starch content than Ghila types and pulps of jackfruit from Modhupur had higher starch content than that of Valuka types. However, the highest starch content was observed in Modhupur Khaja (8.34 %) and lowest in Valuka Ghila (6.11 %). The starch content in the pulps was low as the carbohydrates were present in the forms of free sugars. These results were in agreement with that of reported by Coronel (1988).
<table>
<thead>
<tr>
<th>Sample</th>
<th>Moisture (%)</th>
<th>Dry Matter (%)</th>
<th>Ash (%)</th>
<th>Vit C (mg %)</th>
<th>Carotene (µg/100g)</th>
<th>Starch (%)</th>
<th>pH</th>
<th>Protein (%)</th>
<th>Titrable Acidity (%)</th>
<th>Total sugar (%)</th>
<th>Reducing sugar (%)</th>
<th>Non-reducing sugar (%)</th>
<th>TSS (%)</th>
<th>Fibre (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valuka</td>
<td>82.88</td>
<td>17.12</td>
<td>0.98</td>
<td>5.20</td>
<td>334.06</td>
<td>7.37</td>
<td>6.29</td>
<td>0.57</td>
<td>0.79</td>
<td>13.80</td>
<td>4.92</td>
<td>8.88</td>
<td>20.1</td>
<td>0.55</td>
</tr>
<tr>
<td>Khaja</td>
<td></td>
</tr>
<tr>
<td>Valuka</td>
<td>84.44</td>
<td>15.56</td>
<td>1.04</td>
<td>7.26</td>
<td>470.91</td>
<td>6.11</td>
<td>5.93</td>
<td>0.67</td>
<td>0.91</td>
<td>15.27</td>
<td>7.10</td>
<td>8.17</td>
<td>19.3</td>
<td>0.60</td>
</tr>
<tr>
<td>Ghila</td>
<td></td>
</tr>
<tr>
<td>Valuka</td>
<td>80.04</td>
<td>19.96</td>
<td>1.11</td>
<td>8.18</td>
<td>380.45</td>
<td>7.07</td>
<td>5.82</td>
<td>0.91</td>
<td>0.64</td>
<td>11.29</td>
<td>4.90</td>
<td>6.39</td>
<td>27.0</td>
<td>0.61</td>
</tr>
<tr>
<td>Dorosha</td>
<td></td>
</tr>
<tr>
<td>Modhupur</td>
<td>80.95</td>
<td>19.05</td>
<td>0.88</td>
<td>4.57</td>
<td>346.03</td>
<td>8.34</td>
<td>6.45</td>
<td>0.83</td>
<td>0.46</td>
<td>16.50</td>
<td>7.04</td>
<td>9.46</td>
<td>23.8</td>
<td>0.90</td>
</tr>
<tr>
<td>Khaja</td>
<td></td>
</tr>
<tr>
<td>Modhupur</td>
<td>79.62</td>
<td>20.38</td>
<td>0.70</td>
<td>7.13</td>
<td>520.46</td>
<td>7.27</td>
<td>5.61</td>
<td>0.97</td>
<td>0.61</td>
<td>17.89</td>
<td>8.19</td>
<td>9.70</td>
<td>26.4</td>
<td>0.51</td>
</tr>
<tr>
<td>Ghila</td>
<td></td>
</tr>
</tbody>
</table>
pH
The pH content of Valuka Khaja, Ghila, Dorasha; and Modhupur Khaja and Ghila were 6.29, 5.93, 5.82; and 6.45, and 5.61 respectively. Khaja types contained higher pH values than Ghila types. The highest pH value was found in Modhupur Khaja (6.45) and lowest in Modhupur Ghila (5.61). Dorasha type contained intermediate pH value (5.82). The pH of Khaja and Ghila types varied might be for their difference in chemicals content. Present results showed that the pH of pulp ranged from 5.61 to 6.29. These findings were similar to the reputation by Hossain and Haque (1979).

Protein
Valuka Khaja, Ghila and Dorasha, Modhupur Khaja and Ghila contained 0.57, 0.67, 0.91, 0.83 and 0.97 % protein, respectively. It was also found that Khaja types had higher protein content than Ghila types and pulps of jackfruit from Modhupur had higher protein content than that of Valuka types. However, the highest protein content was observed in Modhupur Ghila (0.97 %) and lowest in Valuka Khaja (0.57 %). Watt et al. (1963) conducted an experiment and observed protein content in the edible portion is 1.3 %.

Titrable Acidity
Greater titrable acidity of pulp was observed in Valuka Ghila (0.91 %) whereas the lowest was in Modhupur Khaja (0.46%). From the Table-2 it was found that Khaja types contained lower titrable acidity than Ghila types. These were may be due to the difference in texture and chemical contents. It was also found that jackfruit pulps from Modhupur had lower titrable acidity than that of Valuka. It was also may be due to change in location and influence of environmental factors. Intermediate value was found in Dorasha which was 0.64%. The present results were found to be closer to the findings of Bhatia et al. (1955) and Hasan (2002).

Total sugar
Location and type influenced the total sugar content of the pulps. Valuka khaja and Ghila contained 13.80 and 15.27 % total sugar respectively while Modhupur Khaja and Ghila contained 16.50 and 17.89 % respectively. Higher total sugar content was observed in jackfruit pulps from Modhupur than those of Valuka types. Higher total sugar content was found in Ghila types than Khaja types. Lowest total sugar content was found in Valuka Dorasha (17.89%) which was might be due to variation in types. The values were in agreement with those reported by Haque (1993) for soft, intermediate and firm types of jackfruit pulps (16.25 %, 15.05 % and 13.23 %, respectively).

Reducing sugar
The percent reducing sugar content was also influenced by types and locations. Higher reducing sugar content was found in Ghila types than Khaja types. The same difference was observed in case of the fruits from Modhupur than that of Valuka type. On the contrary, Lowest reducing sugar content was found in Dorasha type of jackfruit (4.90%). The reducing sugar content of Valuka Khaja and Ghila, Modhupur Khaja and Ghila were 4.92 and 7.10, 7.04 and 8.19 % respectively. These results were in agreement with the values reported by Haque (1993) who had made an investigation on very soft, intermediate and firm types of jackfruit pulps and found 7.44, 8.03 and 7.04 % reducing sugar, respectively.

Non-reducing sugar
Highest non-reducing sugar content was found in the Modhupur Ghila (9.7 %) while the lowest in Valuka Dorasha (6.39%). The non-reducing sugar content of Valuka Khaja, Valuka Ghila, and Modhupur Khaja were 8.88, 8.17 and 9.46%, respectively. The jackfruit pulps of Modhupur had higher non-reducing sugar content than that of Valuka types. These results were more or less close to the values obtained by Haque (1993) who had reported the non-reducing sugar content in very soft, intermediate and firm were 8.81, 6.81 and 6.28 % respectively.

Total Soluble Solids
There were variations in total soluble solids of pulp of different types and of its locations. A highest total soluble solid was found in Valuka Dorasha (27.0 %) whereas the lowest was in Valuka Ghila (19.3 %). Jackfruit pulps from Modhupur contain greater total soluble solids than that of Valuka. It might be due to place difference. Haque (1991) studied with 32 selected jackfruits and reported that total soluble solids in pulps in the range of 14 to 21.5% which agreed with the present findings for most of the values. The values beyond the range might either due to harvesting time or place.

Fibre
There were slight variations in fibre content among the jackfruit pulps. The fibre content was more or less in the range of 0.50 to 0.65 % but exception one was observed in Modhupur khaja which contained 0.90 % fibre. The fibre content of Valuka khaja, Ghila and Dorasha and Modhupur Ghila pulps were 0.55, 0.60, 0.61 and 0.51 % respectively. These were may be due to the differences in composition of pulps. The results were more or less close to the findings reported by Coronel (1988).

Conclusion
The present investigation was carried out to analyze the physical characteristics and biochemical composition of pulp of jackfruits (Khaja, Dorasha and Ghila) collected from different locations. From the study it was concluded that the proximate composition of jackfruit pulps is influenced by both type and place.
Finally, this information would be helpful for selecting the best quality jackfruit in food preparation and preservation.

References